Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

EO data offer an invaluable opportunity for better-informing development policies and quantifying various targets. How can EO be used to help countries achieve specific targets?   Source: ESA Compendium on EO for the SDGs

Target 14.1: By 2025, prevent and significantly reduce marine pollution of all kinds, in particular from land- based activities, including marine debris and nutrient pollution.

This target addresses the need to reduce marine pollution by recognising the land-based sources that emit pollutants such as nutrients and plastic debris. It is therefore an interconnected target that seeks to join land and sea based approaches to pollution reduction and prevention. In setting a deadline for achievement of this target by 2025, the community must act quickly towards global pollution reduction. EO is useful in relation to this target because it has both land, sea and coastal coverage thereby enabling integrated monitoring, e.g. of land based debris which accumulates on shorelines before being transported seaward. Equally, EO can monitor the location and extent of inland waterways, including their water quality as mentioned in relation to SDG 6, enabling the transport of land based, water-dissolved pollutants such as excessive nutrients to be monitored. At sea, the detection of surface, coarse marine debris is an experimental area for EO but with increasing sophistication this technique could yield results in being able to map large debris fields and plot their movement for subsequent intervention and clean up. Evaluation of coastal eutrophication status, anomalies and trends is a challenging but evolving application of EO and contributes to the land-based pollution reduction aspect of this target.


Target 14.3: Minimize and address the impacts of ocean acidification, including through enhanced scientific cooperation at all levels.

As the ocean’s biology and biochemistry is largely under sampled, this target presents a significant challenge for countries hence the stated need to enhance scientific cooperation at all levels. Nevertheless, this enhanced scientific cooperation should involve the remote sensing community, at least at the target level. For instance, EO can support countries in planning for and setting targets on minimising ocean acidification, as part of a wider climate change monitoring/management strategy. EO could help countries with significant marine areas to identify areas at risk from acidification and estimate their extent, e.g. of waters with aragonite close to its saturation level, below which organisms find it more difficult to form and retain their shells. EO can also be used as a diagnostic tool, e.g. to map the impacts of ocean acidification on coral reefs. The utility of the satellite measurements comes in obtaining a synoptic view where few or no in situ measurements of the carbonate system exist. Although EO is limited to the ocean surface layer, these observations are important because the change in carbonate chemistry due to atmospheric CO2 occurs in the ocean surface first.


Relevant Success Stories

Content by Label
showLabelsfalse
showSpacefalse
cqllabel = "sdg14"

...